Targeted deletion of the lens fiber cell-specific intermediate filament protein filensin.
نویسندگان
چکیده
PURPOSE To determine the function of the lens fiber cell-specific cytoskeletal protein, filensin, in lens biology. METHODS Targeted genomic deletion was used to delete exon 1 and the transcriptional start site of the filensin gene. Resultant chimeric animals were bred to homozygosity for the mutant allele. These animals were outbred to mice bearing the wild-type CP49 alleles to eliminate the mutant CP49 gene carried by the 129 strain of mice. Animals homozygous for the mutated filensin gene and wild-type CP49 gene were compared with wild-type and heterozygous animals by Northern and Western blot analyses, light and electron microscopy, and slit lamp microscopy. RESULTS Disruption of the filensin gene successfully blocked production of filensin mRNA, reduced levels of filensin's assembly partner CP49, and prevented the assembly of beaded filaments. Despite the absence of beaded filaments, lenses did not show obvious changes in fetal development, nor in the differentiation of epithelial cells into mature fiber cells, as judged by light microscopic analysis. Filensin knockouts began to show evidence of light-scattering by 2 months and worsened with age. Heterozygous animals exhibited an intermediate phenotype, showing a reduction in filensin transcript and moderate light-scattering at 5 months. CONCLUSIONS The lens fiber cell-specific intermediate filament protein filensin is essential for beaded filament assembly. However, although beaded filaments are not needed for normal lens fetal development or fiber cell differentiation, they appear to be necessary for the long-term maintenance of optical clarity. The mechanism by which the absence of filensin and the beaded filament affects optical clarity has yet to be defined.
منابع مشابه
Tmod1 and CP49 Synergize to Control the Fiber Cell Geometry, Transparency, and Mechanical Stiffness of the Mouse Lens
The basis for mammalian lens fiber cell organization, transparency, and biomechanical properties has contributions from two specialized cytoskeletal systems: the spectrin-actin membrane skeleton and beaded filament cytoskeleton. The spectrin-actin membrane skeleton predominantly consists of α₂β₂-spectrin strands interconnecting short, tropomyosin-coated actin filaments, which are stabilized by ...
متن کاملThe 47-kD lens-specific protein phakinin is a tailless intermediate filament protein and an assembly partner of filensin
In previous studies we have characterized a lens-specific intermediate filament (IF) protein, termed filensin. Filensin does not self-assemble into regular IFs but is known to associate with another 47-kD lens-specific protein which has been suggested to represent its assembly partner. To address this possibility, we cloned and sequenced the cDNA coding for the bovine 47-kD protein which we hav...
متن کاملThe C terminus of lens aquaporin 0 interacts with the cytoskeletal proteins filensin and CP49.
PURPOSE Aquaporin 0 (AQP0), the most abundant membrane protein in the lens, is a water-permeable channel, has a role in fiber cell adhesion, and is essential for fiber cell structure and organization. The purpose of this study was to identify proteins that interact with the C terminus of AQP0, by using a proteomics approach, and thus further elucidate the role of AQP0 in the human lens. METHO...
متن کاملExpression of the type VI intermediate filament proteins CP49 and filensin in the mouse lens epithelium
PURPOSE The differentiated lens fiber cell assembles a filamentous cytoskeletal structure referred to as the beaded filament (BF). The BF requires CP49 (bfsp2) and filensin (bfsp1) for assembly, both of which are highly divergent members of the large intermediate filament (IF) family of proteins. Thus far, these two proteins have been reported only in the differentiated lens fiber cell. For thi...
متن کاملResisting the effects of aging: a function for the fiber cell beaded filament.
PURPOSE The beaded filament is a cytoskeletal structure that has been found only in the lens fiber cell. It includes phakosin and filensin, two divergent members of the intermediate filament family of proteins that are also unique to the fiber cell. The authors sought to determine what function the beaded filament fulfills in the lens. METHODS Light microscopy and electron microscopy were use...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Investigative ophthalmology & visual science
دوره 44 12 شماره
صفحات -
تاریخ انتشار 2003